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ABSTRACT 

Some exact solutions for the time-dependent incompressible 

irrotational flow of a fluid contained between two free surfaces 

are presented.  The free surfaces are either concentric circular 

cylinders or concentric spheres.  The cases where constant pres- 

sures are applied at one or the other of the free surfaces are also 

described, and the corresponding flows are analyzed for Taylor 

instability of the free boundaries. When the free boundaries are 

concentric circular cylinders, flows with constant non-zero circu- 

lation for circuits containing the cylinder axis are also described. 
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3. 

1.  INTRODUCTION 

The exact hydrodynamic flows described in this report were found 

incident to carrying out the analytical phase of a project entitled 

"Ship-Wave Interactions" funded by the Office of Naval Research 

under Task No. NR 334-003. So far as we know, these exact solutions 

have not been reported elsewhere. We will say a little about our moti- 

vation for finding these solutions in the next paragraph, but our reasons 

for presenting them here in a separate report can be stated very simply: 

To put before the numerical hydrodynamics community some simple, but non- 

trivial, exact solutions of the non-linear equations for the motion of 

a liquid with a free surface, which might be used to check the accuracy 

of various numerical techniques for solving time-dependent hydrodynamic 

free boundary problems. 

Our reason for introducing the flows described here is an outgrowth 

of a relation that has been found between turbulence and energy non- 

conservation for inviscid flows.  Details of that connection will be 

reported elsewhere (Ref. 1).  Briefly, for a hydrodynamic flow it turns 

out that a convenient measure of the local turbulence of the flow is 

given by the quantity 

Q " h(l  PoU3) + V   '   M? P°U2+P)1 ' <U1> 

where u(x,t) is the velocity field, p0 is the constant liquid density, and 

P is the pressure.  The presence or absence of turbulence is characterized 

by whether or not Q < 0  (more precisely, in a stochastic framework, by 

whether or not Q < 0 "almost surely"). 

km 
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4. 

In the next paragraph, we will give an example of a flow with u • i 

u • j • 0 and u • k a function of z and t only, for which 

Q «x - 6(z-Zo) 6(t-to) . (1.2a) 

A natural question which arises in this:  Is there a hydrodynamic flow with 

-• -•    -» 

u * k = 0 and u * i, u • j independent of z, such that 

Q« - 6(X-XQ) 6(y-y0) 6(t-to) , 

and is there a flow with 

(1.2b) 

Q « - 6(x-Xo) 6(y-yc) 6(z-zo)  «<t-to)  ? (1.2c) 

Further, we may ask if somehow one can exore•"••» ^erircl  turbulent flows for 

different numbers of independent spac'^l ar abl« in terms of superpositions 

of non-turbulent flows and elerne •*• - x •  * .ows with turbulence characterized by 

(1.2a), (1.2b), or (1.2c). At this -vicing, we have not answered the latter 

inquiry, and indeed there will be no need to answer it until our analysis 

has proceeded to a more advanced stage. As regards the other question, in 

this report we construct flows having properties (1.2b) and (1.2c) as 

natural generalizations of the flow with Q satisfying (1.2a). 

For a flow satisfying (1.2a), consider the hydrodynamic flow with ini- 

tial conditions 

p(x,0) L \   Po *0   =* 

(    0 zx  < 

0 £    z    < zn 

Zn    S      Z      S   z, (1.3a) 

^-_ mniiMHni i   •   i um«- ^" 



I 
I 
I 
I 
I 
I 
: 

: 

:: 

i 
t 
i 
i 

i 

THE JOHNS HOPKINS UNIVERSITY 

APPUED PHYSICS LABORATORY 
LAUREL   MARYLAND 

and 

u (x,0)  - - U k sgn(z), z0  £ |z|   £ zx 

Here  U> 0.    For 0 < t < -*-, we have 

0 0 £ |z|< (z0 - Ut) 

p(x,t)   =    I   p0 (z0   - Ut)s  |z|   5(z1   - Ut) 

0 (zj,   - Utf< |z| 

and 

u (x,t)  - - D k sgn(z), (z0  - Ut)£ |z|  5 (Zl   - Ut) 

For later times, we choose the flow that satisfies 

(  p0    0 s |z| S(2l - zo) 

> 

0   («i - «o)< l«l 

P(x,t) '•* 

and 

u (x,t) - 0,    0 < \z\ *(ä^ - z0)» 

For the flow given by (1.3)-(1.5), we readily find 

t > — 
U 

zo, 
Q - - Po 1^(21-zo) 6(z) 6(t-7J> 

5. 

(1.3b) 

(1.4a) 

(1.4b) 

(1.5a) 

(1.5b) 

(1.6) 

This is a flow of type (1.2a); others may be found by shifting the origins 

of space and time. 

Let us make the following observation:  Instead of (1.5), one might 

choose the flow 

0 0 £  |z|  < U(t- ^-) 

[ Po U(t- 2g>J « 1*1  £ Zl- z0 + U(t- -^-),     t ^ -^ ,       (1.7a) 

0 zx   -  zo + U(t- -^) <  Ul 

 r -  •  -.,!.,        ,   -  - jiiBii^iiiiib   i   i in  ii    - —'•• '"*>*--- •        •   ----•••—^-*^..^-«a 



r 

L. 

THE JOHNS HOPKINS UNIVERSITY 

APPLIED PHYSICS LABORATORY 
LAUREL   MARYLAND 

6. 

and 

u (x,t) = U k sgn(z),  U(t- Ä) * | »I £ sl- z0 + U(t- -y),   t > — .   (1.7b) 

For the flow given by (1.3), (1.4), and (1.7), Q = 0. We may think of 

the flow (1.3)-(1.5) as "perfectly inelastic", the flow (1.3), (1.4), (1.7) 

as "perfectly elastic". There are, of course, various intermediate possi- 

bilities.  The reason we have focused on the flow (1.3)-(1.5) is that this 

is the flow that will be calculated by our water-wave algorithm (Ref. 2). 

That is not a mandatory feature of our calculation, but it seems like a 

good first approximation, and it is with that feature in mind that we have 

analyzed stability and turbulence for the flows generated by the algorithm. 

However, other numerical schemes may calculate instead the flow (1.3), (1.4), 

(1.7), or possibly intermediate cases.  The exact flows we present in this 

report are not predicated on the assumption of inelasticity of "collisions" 

and will be of use whatever numerical scheme one may use.  The only difference 

will be in how the various flows presented here are to be "patched together" 

at moments of "collision". 

Like the flow (1.3)-(1.5), the flows to be presented in the next sec- 

tion have a free boundary consisting of two components unconnected to 

each other.  Furthermore, they are "one-dimensional" in the sense that the 

velocities depend on only one spatial coordinate, if one uses cylindrical 

or spherical coordinates.  In most of the cases, there is only one non-zero 

velocity component in an appropriate coordinate system. All the flows are 

irrotational as well as incompressible. As a consequence, it turns out that 

the "cylindrical" solutions have a greater variety than the "spherical" ones 

because of the possibility of having non-zero circulation for an irrotational 

flow in a multiply-connected, but not simply-connected, domain. 

-. .i... i ••••   i   .   ,.« ..^..•i^,-.^,....-,.. I[IM1III,  
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There are no rigid boundaries for the flows presented here, and in 

addition the domains occupied by the moving liquid are bounded.  It has 

been seen (Ref. 3) that under such conditions the effect of gravity is 

only to bring about an acceleration of the whole flow configuration in 

the direction of the gravitational attraction.  Thus, there is no loss of 

generality in ignoring the effect of gravity in these flows.  If there is 

gravity present; the flows should be considered to be given in an appro- 

priately accelerated system of coordinates.  Of course, if one desires a 

more stringent test of his solution algorithms, not only may he compute 

the flow in the presence of gravity, but he may solve the equations in 

a coordinate system for which the special solutions given here do not 

possess such a simple symmetry.  In addition to accelerated systems, 

such coordinates may be obtained by displacing the origin of coordinates 

and moving the system in uniform rectilinear motion.  Since, however, the 

solutions given here are all relatively smooth, the demands made on a 

solution algorithm to duplicate them will be correspondingly limited, 

and the test on the algorithm afforded by comparison of the exact solu- 

tion with the approximate one will be one of necessity, not of sufficiency. 

o 

:: 
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. 

2.  DESCRIPTION OF THE FLOWS 

For all the flows given here, the liquid occupies the domain 

r0(t) < r < rx(t) , (2.1) 

where for three-dimensional flows r = (j^+j^+z2) and for two-dimensional 

flows r = (x^+y3) .  The sets {x | |x| = r0(t)} and [x | |x| = rx(t)} are 

called the inner and outer free surface, respectively.  The cases we con- 

sider are:  (i) three-dimensional flow, zero pressure on the free surfaces; 

(ii) two-dimensional flow,  zero pressure on the free surfaces; (iii) three- 

dimensional flow, pressure applied at one of the free surfaces; (iv) two- 

dimensional flow, pressure applied at one of the free surfaces; (v) two- 

dimensional flow with circulation, zero pressure on the free surfaces; and 

(vi) two-dimensional flow with circulation, pressure applied at one of 

the free surfaces. 

We caution the reader that, for economy of notation, the same symbol 

may have different meanings in the descriptions of different flows.  Of 

course, if an equation appearing in one flow description is referred to 

in another flow description, the symbols that appear therein will be con- 

sistent. 

THREE-DIMENSIONAL FLOW, ZERO PRESSURE ON THE' FREE SURFACES 

Since the flow is incompressible and irrotational, the velocity field 

is derivable from a potential cp satisfying Acp * 0.  Bernoulli's equation 

is 

n+ i w2 +1 - ° • (2.2) 

where P is the pressure and p0 is the constant liquid density. 

•--• - • -;- -  - 
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We write 

cp = A(t) (rjfi  " 7) + B(t) . (2.3) 

There are four conditions to determine A(t), B(t), r0(t), and ^(t):  The 

two kinematical conditions that points on the free surfaces remain there, 

r0 = A  and 'tx  - 4f . (2.4) 

and the two dynamical conditions that the pressure on the inner and outer 

free surfaces be zero.  Using these pressure conditions we get, on substi- 

tuting equation (2.3) into (2.2), 

* f\       W       A  •    •   1 A2 A (vi)-?I't,+jt"° <2-5) 

and 

... A  *    •   1  A2 

From the kinematical conditions (2.4), we get conservation of volume: 

r^(t) - r*(t) = r?(0) - rg(0) = V  . (2.7) 

By combining equations (2.4)-(2.6) we also get conservation of energy: 

*'<« (do - ufo) -A3(0> (*fe • ^mj •E •      (2-8) 

It is easier to work with the equations in dimensionless form.  In terms 

of E and V above we can find a characteristic time 

   »••nri'iniinir«Vi,ll     I. i»i,.,,„,     „... ^. .......^  ••,. ,„.^  , J,^.,„. ..„....„ ,       ,...,i„>u,rtm.-ri 
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10. 

Letting 

we get 

and 

where 

* V* 6 c  *-pr • (2-9) 

T = —* ,   Ro • . /_ ,   Rt = — )_     ,   and 
' v1^    ' *i   = 

V4 

A 
Jjl/S i//s 

9 

Rx   - Ro =  1   , 

i i_ 
Ro       Rt 

1 

" cv2 9 

dV, 
d^ = 3cy  , 

(2.10) 

(2.11a) 

(2.11b) 

(2.11c) 

vi " B? • (2.lid) 

If we use (2.11a,b,d) to express a in terms of V: , we see that (2.11c) 

is an equation for T in terms of V. Let us consider a special solution for 

which, at the origin of time, T = 0, we have Vx(0) = 1, or RQ(0) = 0. Then 

we have 

rV* (Ml-l/gW * 
'l    (S-i)V* 

T.j fJMHM/Eff)..«. (2.12) 

There are two possible signs for the square roots in (2.12). We shall 

specialize to the case where the positive signs are taken. 

 . . _    - -•   . „•J~. ,^,„. ^  „. 
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We note the following limiting values of the integral in (2.12) 

When Vx -• 1, 

T-I^-I)
6
/
6
 . 

11. 

Equivalently, „  .6/6 

+ i , 

Ro = (Vx-l)l/a - (^y   . 

On the other hand, when V\ "• °°, 

1     1/3 
T -    — Vx       , 

A/3 

Rx   -* A/3   T 

(2.13) 

(2.14a) 

(2.14b) 

(2.15a) 

(2.15b) 

;• 

ill 

In dimensional variables, 

a/6 

r0 - E
1'6 C f t\ as  t 1 0 

and 

V3  |f v    , V ' 
t as  t t 

(2.16a) 

(2.16b) 

Apart from limiting values, we see that (2.12) gives Rx as a monotonically 

increasing function of T, which we denote by 

Rx • F(T) . (2.17) 

 _^. , . — - •• — - -• •-•-•••-  ' 
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. 

Now, suppose we have a general initial-value problem, with r0(0), 

rx(0), and rx (0) given.  From (2.4), (2.7), and (2.8) we compute V and 

E. With Rx(0) obtained from rx(0) and (2.10), we use (2.17) to compute 

a "time" T0 > 0 such that 

MO) = F(T0) . (2.18) 

If rx(0) > 0,   the flow for t > 0 is given by 

Mt)«^3   F(T0+^     , (2.19) 

where t is given in (2.9).  r0(t) is found from (2.7).  If rx (0) < 0, the 

flow for 0 < t < T0t* is given by 

rl(t)=W
3 F(T0 -^ (2.20) 

with r0(t) given again by (2.7).  For t > T0t*, the case of "inelastic 

collision" gives 

*i (t) = W3 
(2.21a) 

and in the case of "elastic collision" 

(t).W
3 F(^-TO) (2.21b) 

In the former case, with Q given by (1.1), we have 

Q - - 2n o0 E 6(t-Tot ) 6(x) (2.22) 

In the latter case, Q • 0. 

L.i ...   I ...  ,- ....^.w...... ^,.,...   - , ;..    ..^—.,,^   ..^.    ...^^iw^fato 
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TWO-DIMENSIONAL FLOW, ZERO PRESSURE ON THE FREE SURFACES 

The similarities with the three-dimensional case are so extensive that 

we only indicate what changes need to be made in the equations above as we 

go along. 

In place of (2.3) we have 

cp = A(t) jen-£-|^+ B(t) . (2.23) 

The kinematical boundary conditions are 

A        •    A 
r0 - —  and  rx = — , 

ro ri 

from which we get conservation of volume, 

The conservation of energy is expressed by 

The characteristic time is 

*a/a 

(2.24) 

rf (t)  - r|(t)  = r?(0)   - rg (0)  - V . (2.25) 

riO        o *,(0) 
A(t> in^t)=A(0) ln^m'E- (2-26) 

t* - -—      . (2.27) 

Let 
t rO rl A 

T * 7* • *° = T7T >     Ri ' TT •        a *  w     * (2'28) 
» yl/2 yl/a gl/2 

lll"'l*l*'*'tu,M*aM^,Mtja*^kJM*-J'" -••• •    --••• "-'      ...,..,.,.-• _..-,-      ,,„.., „ ,,..,,   „ 



THE JOHNS HOPKINS UNIVERSITY 

APPLIED PHYSICS LABORATORY 
LAUREL MARYLAND 

14. 

.. 

. 

Then the equations assume the dimensionless form 

R? - R§ = 1 , 

^n ^~ = — » 
RO     CY8 

where 

dVj 

dT 
= 2a , 

Vi= R? . 

(2.29a) 

(2.29b) 

(2.29c) 

(2.29d) 

Consider the flow for which Vx (0) = 1, RQ(0) = 0.  In place of (2.12) 

we get 

£•?(*(»*))*«• (2.30) 

where, as above, we take the positive sign for the square root.  This gives 

Rx as a monotonically increasing function of T, denoted by 

Rx = F(x) . (2.31) 

The following limits are of interest. When Vj. - 1, 

-^0"^T)%(V'-1) 

or 

V, - 1 + 
2/2 T 

7H ' 
osA -1/2 

(* *) 

(2.32) 

(2.33a) 

(2.33b) 

"""•      -•  -'    -    —     ' •-   -    '-" „^^^».fc^^.^.^—~^.^—^-n. ., . . 
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When Vx -* °° , 

I     1/2 
T - -=- V, 

15. 

(2.34a) 

R,   -» -s/2 T   . (2.34b) 

In dimensional variables, 

23A gi k    ti/a 

In 
(** )) 

as  t 4 0 

and 

-<&(%)   t  as  t t 

(2.35a) 

(2.35b) 

Suppose, in general, we are given ro(0), rx(0), and ^(0). From (2.24)- 

(2.27) we compute V, E, and t*.  Find Rx(0) by (2.28), and then use (2.31) 

to find T0 > 0  such that 

fl 

D 

Ri(0)   - F(TO)   • 

For rx (0) > 0,   the flow for t > 0 is 

ri(t)  - W3   F^o+^f)      • 

For rx(0) < 0,   the flow for 0 < t < t* T0  is 

rx(t)  - W2    F  (ro-^f) 

(2.36) 

(2.37) 

(2.38) 

'"*•"       "     "••"• '' ""    -   ••"'i'     ndtamiaiMj—IMMM*«*. .   .   . >••••—     .     .a.., .    „      ••     -•- -       — •     --•  ,.,„.   .«r .v.^.*W^MM^... 
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For t > t* T0  and r. (0) < 0, we get 

fc<t)  * W3 (2.39a) 

in the inelastic case,    and 

rt(t)  = ^aF^ - T0\ (2.39b) 

in the elastic case.  In the former case, 

Q = - TT Po E 6(t-t*T0) 6(x) . (2.40) 

THREE-DIMENSIONAL FLOW, PRESSURE APPLIED AT ONE OF THE FREE SURFACES 

The velocity potential is given by (2.3), and the kinematical conditions 

at the free surface are still given by (2.4).  Since the only quantity of 

interest is the difference between the pressures applied at the inner and 

outer surfaces, we have no loss of generality in setting the pressure at 

the inner surface equal to zero.  Let the pressure at the outer surface have 

the value Px  constant on the surface.  Then equation (2.5) scill holds, but 

(2.6) should be replaced by 

A •    •   1 A2   Pl 

The conservation of volume is expressed by (2.7).  The conservation of energy 

takes the following form when P1 is independent of the time: 

*8<<V7TLT - VTTö) +1 £ *<« • »2<°>(d<r7 " *&>)+1 £ «» ' «   • 
(2.42) 

-.•••*•••••.« »*i.nm  i t, um  »liimiMMiii! (mim», i I ^ma^^mäi**...- 
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Consider the case when e, as defined by (2.42), is > 0. This is 

the case whenever Px > 0 and sometimes when ?i  <  0. Then let us write 

e = E. Define t*, T, ^, %, «, and Vi by (2.9), (2.10), and (2.lid). 

Define Ttj by 

V Pi 
IT, - | £    . (2.43) 

Then the governing equations are (2.11a), (2.11c), and 

For the flow with Vx (0) • 1 (RQ(0) • 0) 

i r*   vi- 6- it /       m T = 3  J     —r*i -is  d?   • (2-«) 
(S-Dlyfe (^i-fTT, (5-1)) 

We take the positive signs for the square roots.  The behavior for small 

time (T i 0) is given by (2.14a,b). 

Two cases should be distinguished.  In the first, Pt > 0.  In that 

case the expression (2.45) for T fails for 

Vi  >    to " 1 + 3fj- • (2.46) 

-=J—      „im^^iij^mj^^^, . .._      ...,._.-. ., .  -   •*•••• JA.!—  ,^.„. .     .......        •••,-•••.,•,.. 
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Li 

Define T* by 

1   (M)^(i-f^(5-i))1/2 
d§ . 

Then as (T*-T) I 0, we get 

]/a / o \i/3 

Vi " 1+2T^--|^ 

and 

Ro - 
_3_i/3  i 

2nx    " 2 /  , Ni/3 

(T*-T)2 

r* _ ,-\2 

(2.47) 

(2.48a) 

(T* - T)2 .    (2.48b) 

For 0 < T < T*i (2.45) gives B| as a monotonically increasing function of T, 

which we denote by 

Ri = F(T) (2.49) 

For the general initial-value problem, we have ro(0), rx (0), and 

^(0).  From these, by (2.4), (2.7), (2.42), (2.9), (2.43), and (2.47), 

we may calculate V, E, t*, TTj , and T*.  If nt > 0, there will be a T0 € (0,T*] 

such that 

MO) * F(T0) . 

When rx(0) > 0,   the flow for 0 £ t s t* (T*-TO)  is 

(t)  -W3   F(T0  • **) (2.50a) 

 __—.—-   - - -     •   —••   --•-  ..— -.,  —-. ..•—      .     .......    .. -   --j 
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for t* (T*-T0) * t < t*(2T*-T0)  it is 

MtO-W3   F(2T*-T0-|A    , (2.50b) 

and for    t > t* (2T*-TO)  it is 

rx(t)  = W3 (2.50c) 

in the inelastic case.    When rx (0) < 0,   the flow for 0 £ t < t*T0  is 

rx(t)  = V^3    F (TO-^*!   , (2.5U) 

and for  t > t* T0   it is 

ri(t)  » V^3 (2.51b) 

in the inelastic case.  In the case of elastic collisions, these flows will 

be time-periodic with period 2t*T*, and ro(t) will vary between 0 and 

ik  f  3 \* *h w 
At this juncture, let us observe that one or the other of the free 

surfaces will tend to exhibit Taylor instability at some point during the 

flow, and hence the solutions with non-zero pressures imposed on the free 

surfaces will be of rather limited physical interest. It follows from an 

analysis elsewhere (Ref. 3) that we may expect Taylor instability at the 

surface r • r0(t) if and only if 

|||     < 0 (2.52a) 
ar r0(t) 

..,„•„,»,.,....,.. .„•,„. i , ..„. ,  , ,.  ,_ ......     i 
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and Taylor instability at the surface r = rx(t) if and only if 

an 
S?rx(t)

>0- (2'52b) 

Note that we can write 

l 1 

= e + px • rn(t) r 
i 

i—
i 1 (2.53a) 

*o(t)  *i(t) 

where 6 is superharmonic and 6 = 0 at r0(t) and rj_(t).  Hence, 

P\ * 0  and  |£|     SO. (2.53b) 
9r r0(t) 

ar,ri(t) 

Accordingly, from (2.52) and (2.53), we will never get Taylor instability 

at r = r0(t) when Px ^ 0, or at r • rT (t) when Px £ 0. 

For the case we have considered so far, where ?x  >  0, if rT(0) > 0 then, 

because rt(t) is bounded above by \r" (1+ •?=-)       ,  we must get r\(t) < 0 

for some t € (0, t*(T*-r0))> and thus Taylor instability at r = Ix(t). An 

explicit calculation, based on (2.2), (2.3), (2.44), and the known values 

of P at r • r0(t) and r * ^(t), yields 

V*/3 1 oP|    .     1     | _  |\  2 _ /n3 ,."" 1 A   1\A     2   3 \ ( 

(2.54) 

* 
Define RQ  as  the unique positive solution of 

8^(4(1^+1)"" - 38?) 
«l   -f— 173 — (   (Ro°+l)       + 2R*  (Rf+1)       +3RT).(2.55) 

.—..., .-^,-,J.>^..-.....^,.-.   . t   ill      i  i      im^MMMMIMM— i       •••• •     •   •   -*-••-"•  -....-  
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It is easy to see that 0 < Ro* < (Ä-J  . For r0(t) > V
l/3 R^, we get 

Taylor instability at rx(t).  If ij(0) < 0, then we do not get Taylor 

instability at the boundary r = rx (t) unless ro(0) > V
1'3 Ro*. 

Consider the case where Px < 0 but e in (2.42) is > 0. We may still 

use equation (2.45).  Define 

f     t      i\i/a\Vs 

+      1 
rr /—9——r*^ d? • •U —TT-7   r—L—r^-d? • <2-56> = 3     1    (§.1)V. (i. 2 ^ (g.DJ 

*   + Then we will have Vt t °°    as  t »   t    T   .     This  follows  also  Jrom the equation 

of motion 

1     ap. 3pi  *1 
h  - - jr   ÜL 77      aS       ri   t   »  • (2-57) Po     °r ri Po    V 

For 0 < T < T   ,   (2.45)  gives Rj   as a monotonically increasing function of T: 

Rx   = F(T)     . (2.58) 

In the same way we derived equation  (2.54), we find 

V*/a 1    oPi 1 ( „ ^ r,    2-.JI ,3 1/1        l\/3 2 1 \ j 
—tfl%w'arn inin1"3^<R^i>J2U-R7;(ig + R0T + RY)) • 

\Ro  Ri/ 

(2.59) 

It is easy to see that there is a unique positive solution RQ of 

.   ni     .^^-HD^-RO-)8     (3(Ro+3+1)a^ +   2Re+(Ro+3+1)1/3+   „J.   )     t (2>60) 

Ro 

For r0(t) > W
3 RQ", we get Taylor instability at r0(t). 
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1  j 

Now consider the general initial-value problem, where we are given ro(0), 

rx(0), and rx(0).  From (2.A), (2.7), (2.42), (2.9), (2.43), and (2.56) 

* + + we compute V,   E,   t  , TTX ,  and T   .     We find TO   €  (0,T  )  as  the solution of 

Ri   = F(T0) (2.61) 

If rx(0) > 0, the flow for 0 s t < t* (T
+
-T0) is given by 

rx(t) = W
3 F^o+pf^ (2.62) 

*  + • 
For t^t  (T -T0) the flow is undefined.  If rx(0) < 0, the flow for 

0 s t < t*T0 is given by 

(t)=V-/3 F(T0-^) (2.63a) 

In the inelastic case, for t > t T0 we have 

li Mt) = V1'3 , 

* * + and in the elastic case,   for  t    T0 < t < t    (T0+T   ) we have 

(2.63b) 

J 

Mt) =W3 r(|»  -^  . (2.63c) 

Suppose finally that e as given by (2.42) is < 0. We write E = -e. 

Define t*. T, RQ , Rx , or, and Vx by (2.9), (2.10), and (2.lid), and let 

• ••- •—»-.-.*•«—'--»-•  „,.,,. ,..---^ ...—...- -• -.  •.- •—  
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23. 

v Pi 
E Po 

The equations of motion in dimensionless form are given by (2.11a), (2.11c), 

and 

It is clear that for this flow, for all time, 

Ro3 * " 2~ • (2.66) 

Thus, the liquid remains away from the origin, and we do not have the possi- 

bility of "collisions", either elastic or inelastic. 

3 
Consider the flow with Vx (0) = - *•*- + 1: 

.1   J" O-fr-E 
IXAY* 

T-4 J   a—!—»Li—r-T-«-        (*•«) 

We take positive signs for the square roots.  (2.67) gives Rx as a monotone 

increasing function of T: 

RI   • F(T) . (2.68) 

As T   I  0 we get from (2.67) 

d - 4$k 
3 9 V       *V 

V*  -    X  " 2TTT + 4 —-—T^ —    T* <2-69a) 

Ll  
'      (^(J-^-f*)'*) 

•" "  '   "     ••*•• "•"• •    ••••   •""•-*»—*•j-^^-" • • - -     -•- '-•••• •—-— - —.- --   —•.. ...j 
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and 

*-(-** 

K -£) 
V3 

(•^(Kf-fiO 
(2.69b) 

Define T    by 

T+ = A 
_3 
2n -+i (5-1)1/6 C-i- §-^(5-1)) 

i/s» 
d? . (2.70) 

Using (2.2), (2.3), (2.65), and the prescribed values of P at the 

free surfaces, we get 

4/3 
v  i_ api 
E   p0 or1 

r0(t) 

 i   Ttjl.-L   3 B, +3 Rf 
2 (RO * RI)(R§ + RoRi +Rf)( 

Ri  R? 
(2.71) 

It is clear from (2.71) that we get Taylor instability at the surface 

r = r0(t) throughout this flow. 

For the general initial-value problem, we are given r0(0), rx(0), and 

^(0).  Using (2.4), (2.7), (2.42), the equation E = - e, (2.9), (2.64), and 

(2.70), we compute V, E, t*, nx, and T
+

. We find T0 € [0,T
+

) as the solution 

of 

Rx - P(T0) (2.72) 

__Ä-kÄi^Ä.. 
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If  rx(0) > 0,   the flow for 0 s  t < t* (T
+

-T0)   is 

(t) = W3 F (r0  + ^ (2.73) 

T The flow is undefined for t a t* (T -T0). If fx(0) < 0, for 0 £ t s t* T0 

we have 

*(t)-V* F(T0 -^ (2.74a) 

and for t* T0 <; t < t* (T0+T
+
) , 

rx(t)=W3 F(^-T0) (2.74b) 

For t ^ t* (T0+T
+
) the flow is undefined. 

I 
I 
1 
X 

1 
1 
I 

TWO-DIMENSIONAL FLOW, PRESSURE APPLIED AT ONE OF THE FREE SURFACES 

The velocity potential is given by (2.23) and the kinematical free sur- 

face conditions by (2.24). We set the pressure on the inner surface equal to 

0 and assume that the pressure assumes a value Px that is constant over the 

outer surface r = rx.  The conservation of volume is given by (2.25). When 

Px is constant in time, the conservation of energy takes the form 

r,^)  P, rx(0)  p, 
A2^> An Mt) + D7 *(t) = A2(0) ln ^W + p7 <W> H e •       (2-75) 

e as defined here will be > 0 whenever Vi  >  0, and sometimes when 

Px < 0. When e > 0, we set E = e.  We define t*, T, RO, Ri , a,  and Vx 

-^-—  i^  • •- ^»— i  — ^ -^_ LJ^.1   t — 
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by  (2.27),   (2.28),  and  (2.29d).     Let 

rr           V      Pi 

The equations  governing  the  flow are  (2.29a),   (2.29c), and 

a3   An^ = 1  - -\Of-l)   . 

>'ryr--"»w 

Let us examine the special flow with Vi(0) = 1 (RQ(0) = 0) 

2v/2 1  (1-TTX(5-1) )X/S 
d? • 

26. 

(2.76) 

(2.77) 

(2.78) 

As usual, we take positive signs for all square roots.  The behavior for 

small T is given by (2.33a,b). 

Suppose PT > 0.  Then it is clear from the energy equation (2.77) that 

Vi will have an upper bound, 

5o -l+£  • (2.79) 

We define T by 

%Jl    1     (l-Tii(5-l))1/! 
d? (2.80) 

As (T*-T) 1 0, we get 

2TT1 
* \2 V^ l + HT - inTHHrT  (T "T) (2.81a) 

Ü 
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and 

g *-(fcj XnCl-HTx) 
£±1  (T*-T)

2
  . (2.81b) 

For 0 < T < T*, (2.78) gives Rx as a monotonically increasing function of T, 

which we denote by 

Ri = F(T) . (2.82) 

As we have seen in the three-dimensional case, if we get Taylor instability 

at all it will occur at the surface r = rx(t). Using (2.2), (2.23), (2.77), and 

the prescribed values of the pressure on the free surfaces, we get 

W3 i_ apj 
E   Po °rri(t) 

1   1 

^s w,(*"l)\"*tM " 
*° R|     ' 

We can check that there is only one positive root Ro of the equation 

- TTj -  -  (2.84) 

in( 1+ — 
Ro*2) 

and this root satisfies 0 < R* < ( ^-\ 

Now let us consider the general initial-value problem, where we are 

given r0(0), rx (0) , and ^(0).  Using (2.24), (2.25), (2.75), the relation 

~~—'—- ' • -—•"— '••  •—•  « • i *m  -um I-.-....- *—. —— -  ... .,— .... _^, .    ••.,.......  ... .. ... .... .....         ___ __. 
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E = e, (2.27), (2.76), and (2.80), we find V, E, t*. Tfj , and T*.  There 

will be a T0 € (0,T*] with 

Rx(0) - F(T0) . 

* /„* If MO) > 0, the flow for 0 s t i t" (T -T0) is 

Mt) V1^ F(T0 + CT°+ ^) (2.85a) 

for t* (T*-T0) < t < t* (2T*-TQX it is 

(t) * W3 F (2T* - TO- M 

and for t > t* (2T*-T0) it is 

(2.85b) 

Mt) = W3 
(2.85c) 

in the inelastic case.  In the elastic case, for t* (2T*-T0) < t £ t* (3T*-T0)> 

we get 

rT (t) - W
3 F(X - 2T*+TO) (2.85d) 

and a flow that is periodic in time with period 2T* t*.  For these flows 

we will have Taylor instability at r - Mt) whenever r0(t) > W
2 R?, which 

will eventually occur if MO) > 0. If M°) <  °t the flow for 0 £ t < t* T0 is 

Mt) - V1'3 F 
(*•» 

(2.86a) 

I •••. .-.•• .a in  a»i «in .  <„ 1.1.1.,.I ••li^lMllr  -    — -M """      i li Mil I       •   HI       • 



HÜWSWW ••••F**"-' ' -"T.T ; T".'' ' 

I 
I 
I 
] 

I 
:. 

fl 

a 
I 
T i 

ii 

THE JOHNS HOPKINS UNIVERSITY 

APPLIED PHYSICS LABORATORY 
LAUREL MARYLAND 29. 

and for t > t* T0 it is 

rj (t) » W3 (2.86b) 

in the inelastic case.  In the elastic case, for t* T0 < t £ t* (T0+T*), we 

have 

Cl(t) = V
1'3 FQJ; -  To)  , (2.86c) 

and for t (TQ-H"*) £ t < t  (T0+2T ),we have 

rl(t) = v
1/3 FAT**T0- ^\ (2.86d) 

•* »•* the flow being periodic in time with period 2t* T .  In the inelastic case 

we will not get Taylor instability at r = rx (t) if ^ (0) < 0 and ro(0) <• 

V1^3 Ro*.  Otherwise, at some point in the flow,Taylor instability will occur 

on the outer surface. 

Next we suppose that e in (2.75) is > 0, but Px < 0.  Equation (2.78) 

still holds and gives Rx as a monotonically increasing function of T: 

RX = F(T) , 

for 0 £ T < °°.     From (2.78) we see that, when V\   \ •, 

(2.87) 

1    (    lV/3 An V, (2.88a) 

2^2 

or 

Ri  - e 
v7? (-n,)l/8T 

(2.88b) 

.,-.^..~—...  .  r..,^.r_.   . r. 
M  
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We can also verify this directly from the equation of motion, 

Po 9r'r, PoV 
Px ra  as rx t » (2.89) 

As we have seen, Taylor instability can only occur at the inner boundary. 

By using (2.2), (2.23), (2.77), and the prescribed values of P at the 

boundaries, we find that 

£t  I_ api 
E   Po °r r0(t) 

M*]£ 
% +[1-^(^-1)1 

Rf/ An*! 
R§' 

(2.90) 

There is a unique positive solution, RQ, of the equation 

e+£K1+£)-#-- (2.91) 

For r0(t) > V
1/3 R£, we will get Taylor instability at r = r0(t). 

In the general initial-value problem we are given r0(0), rx(0), and 

rx(0). We use (2.24), (2.25), (2.75), the equation E - e, (2.27), and 

(2.76) to find V, E, t*, and T^ . We find T0 € (0,») such that 

Ri(0) - F(T0) . 

If rx(0) > 0, the solution for t a 0 is 

rx(t) - V^
3 F 

(***) 
(2.92) 

bull n n 111 Mil *"---*—*—  "•••  -•••—••-'»  - -   i  ,  i  mi        •   ••••-—. 
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If ^(0) < 0, the solution for 0 £ t < t* T0 is 

(2.93a) 

and for t > t* T0 it is 

ri(t)  = W2 (2.93b) 

in the inelastic case.     In the elastic case,   for t > t* T0, we have 

rx(t)  = W2    F(\- T0)  . (2.93C) 

There will be no Taylor instability in the inelastic case if T\ (0) < 0 and 

r0(0) <.  V1 2 RQ.  Otherwise, at some point in the flow,we will get Taylor 

instability on the inner surface. 

Now suppose e in (2.75) is < 0. We write E = - e. We use (2.27), (2.28), 

and (2.29d) to define t*, T, RQ , Rx , a, and Vx, and we let 

"l -i h   ' (2-94) 
E Po 

In dimensionless variables, the equations of motion are (2.29a), (2.29c), and 

a2 In ~ - - 1 - rr^Rf-l) . (2.95) 
«o 

We must have R§ a - — , and thus we cannot have "collisions" of liquid at 

the origin. 

"i 

-....,, «. . i, ii—hii^M^^^^ 
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Let us examine the special flow with V1(0) = 1 - =-. We get 

1   ? C<^^h 
-L.  J  ^J *rV' rf§ , (2.96) 
in lm i_ (-i-TTid-i))1/3 

and taking positive signs for the square roots, this gives Kx   as an increas- 

ing function of T € [O,00): 

Rx = F(T)  . (2.97) 

The asymptotic behavior as T t °° is given by equation (2.88). 

The behavior as T A 0 can be obtained from (2.96): 

* - l - k - i$kr T2 (2-98a) 

and 

-(-i) 
l/3 (-TT,)3^ 

+ in7i^ry Ta • <2-98b> 

To study the stability of the surface r = r0(t), we use (2.2), (2.23), 

(2.95)  and the prescribed values of F at the boundaries to get 

V3^  1_ oPi 

E    Po Sr"r0(t) 

«•*•£) «*§'-* ^«*^l/| 
(2.99) 

and this is < 0 throughout the flow.  Thus, we get. Taylor instability at 

r - r0(t). 

To solve the general initial-value problem, we suppose that we are 

given ro(0), rx(0), and rx(0). We use (2.24), (2.25), (2.75), the equation 

E - - c, (2.27), «nd (2.94) to compute V, E, t*, *nd TTX. we find T0 € [0,»)       J 
•---k - -•*-"--  --- - —      , . . • - -..         -•  --- -- -   —• • ••-•• • —. -•... --J^-^ 
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so that 

33. 

Ri<0) - F(T0) . 

Then,if rx(0) > 0, the flow for t 2 0 is given by 

Ci(t) - V^3 F (T0 + £gt . (2.100) 

If rx(0) < 0,  the flow for 0 s t s t* T0  is 

and for t ^ t* T0 

Mt)  = W3   F (T0  - Tf)      , (2.101a) 

ri(t) = W3   T(^ - T0"\    . (2.101b) 

1W0-DIMENSIONAL FLOW WITH CIRCULATION, ZERO PRESSURE ON THE FREE SURFACES 

In place of the velocity potential (2.23), we have 

cp = A(t) An —^-r- + C 6 + B(t) , (2.102) 

where 6 is the azimuthal angle.  The important case is where C is independent 

of time as well as space.  The kinematical boundary conditions are still given 

by (2.24).  The dynamical boundary conditions are obtained from (2.2), (2.102), 

and the fact that P • 0 on the free boundaries: 
f I 
-  * 

Ä|n^-5-ri +B+i ~^- - 0 , (2.103a) 

r 
' -K+B^^'O. (2.103b) rl        z rf 

1  , , 
 ^m        .. - .       —  •      ...    .......     ,-m._j ,. M-^»——-j—... - . .  .   .  - ..     •- .   , —. .—--A 
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From the kinematical conditions,  conservation of volume follows as 

in (2.25).  For the conservation of energy, we get 

ri(t) r, (0) 
(Aa(t)+C3) In -^-^  - (A3(0)+C2) in  -^-^y = E . (2.104) 

We may use (2.27), (2.28), and (2.29d) to define t*, T, RQ , Kx , a, 

and V!.  Further, we let 

C 
V = 

£i/a    • (2.105) 

The governing equations are (2.29a), (2.29c), and 

o 
(c^+Y2) An-i- = 1 . (2.106) 

Since Y is constant, it is clear from (2.106) that we cannot have RQ = 0. 

Thus, these flows will never exhibit "collisions".  The minimum possible 

value of RQ will be achieved when r0 = A = a  = 0: 

Y3 An£- 1-Vl -   l2/^   . (2.107) 

Let us consider the flow for which V\(0) is given by (2.107).  Then we 

get 

h        i.r,._u ln (l+ gir) 
*     -      V    ~y*—7     i\  I     d? ' (2>108) 

2/2 1        \1- V M 1+ Til 

—'•*• "••"—*^-^-*J"ai**ai^a- •--    -~.......        .-...-,    -       mmti    llll    —*       ..^^^^^^fc».,,.: —-J- j 
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35. 

In this equation we take the positive sign for the square root, and thus 

we get Ra as a monotonically increasing function of T: 

RI • F(T) (2.109) 

From (2.108) we may obtain the behavior as T I 0; 

V, - *£(? - 
1-e 

2 V 
e **  \   T» 

Ro - e 

1 / 1 

e -e 

L \-Va     1 (  l    l\^2 

(2.110a) 

(2.110b) 

. 

The asymptotic behavior as T t °° is given by (2.34). 

Now, suppose we have r0(0), rx(0), and rx(0). From (2.24), (2.25), 

(2.104), (2.105), and (2.27) we find V, E, Y and t*. We find T0 g [0,») 

such that 

Ri(0) = F(T0) . 

If rx (0) > 0, the solution for t £ 0 is given by 

*i(t) • V^*  F (*•$ (2.111) 

If ^(0) < 0,   the solution for 0 <  t ^  t    T0   is 

and for  (t t    t) 

(t)  = ^ F(^TO   - V) 

^t rx(t)  = vVs     F(-    _ T0j 

(2.112a) 

(2.112b) 

ri „.•...>».•, ,.M.I, ,..— .,,,.     ,,„      -^.„.^.i-   .•,,..,•>     .„.^-^.^^•ll|-|| „ ,,.,„     .......     ...^ 
•     •   •   • 

..    ^   ,        .....   ... -    ,^|||| „, |mJj 
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TWO-DIMENSIONAL FLOW WITH CIRCULATION, AND PRESSURE APPLIED AT ONE 
OF THE FREE SURFACES 

We treat now the case where there is circulation, ar.d, as well, a 

pressure P0, which is constant over the surface, is applied at the inner 

boundary.  The pressure at the outer boundary is taken to be 0. 

The velocity potential is given by (2.102).  The kinematical boundary 

conditions and conservation of volume are given by (2.24) and (2.25). For 

the dynamical boundary conditions, we insert (2.102) into the Bernoulli 

equation (2.2) and get 

A in 
h       ri *     2 r§    Po 

(2.113a) 

_ri +B + ___ = 0 (2.113b) 

The expression of conservation of energy assumes the form 

(A3(t)+C2) in ^4^- - — r|(t) = (As(0)+C2) in ^-^- - — r| (0) a  e .  (2.114) 
r0(t)  Po ro(0)  Po 

If  P0 < 0,   e will be > 0.   There will also be cases when e > 0 and 

P0 > 0.    So first we consider e > 0 and set E = e.    We define  t*,  T,  RO, 

Rt ,  a,  Y,  and Vx   by  (2.27),   (2.28),   (2.105),  and  (2.29d).     Let 

TU  ml   h. U°       E    p0 
(2.115) 

The equations governing the flow are (2.29a), (2.29c), and 

(o^+v2) in ^- = 1 +TT0(R?-1) . 

t        namiiiMiMllllMil^ mn i     ,m m.- 

(2.116) 
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:: 

Since Y is constant, we cannot have RQ = 0, and there will be no "collisions' 

The minimum value of RQ will be achieved when a  = 0: 

Y2 An -i- = 1 + TT0 Rg  . 
«o 

(2.117) 

. 

-- 

When TT0 a 0 there will be one and only one root RQ > 0 of (2.117).  We 

call this root ^(Y.^o).  For this case, the flow will have r0(t) ä V 
2R0(Y,

TTo) 

Given Y and TT0 < 0, there may be 0, 1, or 2 roots RQ > 0 of (2.117).  If 

there are no roots, 

Ri 
Y2 in  — > 1 + TT0 R§ 

«0 

for all RQ > 0.  On the other hand, from (2.116), for any real flow 

: 

ü 

Y2 in -i- * 1 + n0 R§ , 

and thus for such flows equation (2.117) will have 1 or 2 roots. We easily 

check that if (2.117) has just one root, we must have 

^- In  (1+ ——^ = 1 + TT0 R§ (0) 
2    V  R§(0)/ 

and 

Y2 = n, 
2R|(0) R2(0) 

from which we get 

A(0) = 0 

and, on combining (2.113a) and (2.113b), 

X(0) = 0 . 

o  > 

(2.118a) 

(2.118b) 

(2.119a) 

(2.119b) 

.. -. -—   _.. ... - .. .. ,....,••>...-i..„.  ....,.,........u    ....-, --^^ ^^^^^w^vii^jm+jm 
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38. 

In this case, the flow is steady, and the negative pressure P0 on the 

inner boundary is just sufficient to balance the centrifugal force of the 

swirling motion.  So we may consider the case where (2.117) has two 

distinct positive roots.  We call them Ro  (Y.TTo) and Ro  (Y.TTo)» with 

R,J 'the smaller root.  Thus, the flow will satisfy 

V^2 Ro-'^YJTo) 5 r0(t) ^ V^
3 Ro(2)(Y,TT0) (2.120) 

for all t s o. 

A more complete description of the restrictions imposed on -TT0 and 

Y2 by the requirement that (2.117) have at least one solution is as follows: 

We must have, for 0 < - TT0 < <= an<j o < Y2 < °°, 

and 

where the curve Y2 

equations 

0 < Y2 ^ G(-n0) 

0 < - TT0 < G"
1
 (Y2) , 

(2.121a) 

(2.121b) 

G(-TT0) or - n0 = G  (Y
2) is given parametrically by the 

- TT„  - 

§[(1+|)  An (M-i) + l" 
(2.122a) 

and 

2 

for 0 < 5 < «o.    We see  that 

K1+ f)+ TO 
(2.122b) 

d£ (-"o) < 0, HP) > o. d| 

     .  
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and hence 

-l 

<L££x]L<o,      iV2!<o,      o<x< 
dx dx (2.123) 

From (2.122) we obtain 

and 

also 

and 

G(x) - •=-   as  x i 0 
2x 

G(X) - In4   aS  X t " I 

-l . v  x 2/x ft 6 (x)-je     as  x I 0 

G~ (X) - -r-  as  X t v    2x 

(2.124a) 

(2.124b) 

(2.125a) 

(2.125b) 

t\1  s 
Now for TT0 < 0, let us consider the special flow with V! (0) = (RQ  ) + i« 

We get 

Vi 

T - —    j 
2^2  ,D(i) 

2 

(RoVi/) +1\1 +n0(5-i) - £ .11 Ki+ f^- 
dl  .     (2.126) 

Taking the positive square root, we see that (2.126) gives R, as a monotonically 

increasing function of T for 0 < T < T  , 

Ri   « F(T)   , 

where 

(Ro(  }) +1 

-*= I 
'"6+ grr) 

i/a 

271 (Ro(l))%i V+ "°«"lJ • f ln(1+ FT). 

(2.127) 

d?   . (2.128) 

'•--' • •    • ••       •• • •— - - • •• — -   •   -  - •• 
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As T 1 0, we have 

Vx - (Ro(l))2 + 1 +  £  l*0+£(i i—V 
1 + TT0 (Ro(l))2 .    2 V(Ro(l))2   (Fo(l))s+iy. 

T3   (2.129a) 

and 

Bo *(l) + 
24l)(i-m0(R<J «»^r0*^«^" (Bo('))aJi (2.129b) 

At the other end of the range, we find the behavior as (T -T) 4 0: 

V! - (Ro(2))2 + 1 
1-KT, 

— 

_v3^ r       YI f   i i    \     * 
.(Bo(a))a -"n° " 2 MRo(z))2 " (Ro(2))2+l^ (2.130a) 

and 

Ro - Ro(8) 

2n£ )(l-KTo(Ro(a))a) L      2 V(Ro(a))2  (Rofe))2+l/ 
(T*-T)

2
. (2.130b) 

If we get Taylor instability, it will occur at the surface r = rx(t). 

From (2.2), (2.102), (2.116), and the known values of P on the free boundaries, 

we find 

^i ail JL— ) „ i i C    - —4:! -O+[H*O<RM>]( £ - tik 
Po dr rx(t)  Li« &. ) V^   .  *f 

R§ 

(2.131) 

As in the case where tnere was no circulation, there is a number« RQ, dependent 

* a     1 only on -n0, 0 < RQ  < - =— , such that the expression in (2.131) is 
no 

negative for RQ < Ro  and positive  for RQ > R^.     R^ satisfies 

in 

TTr 

 , ._ 

6+ —V -r 
(2.132) 

+ 1 
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The question of Taylor instability thus depends on the relation of 

RoVtTo) to Ki1^(Y,TTo) and R<j  (Y,•0)« We see from (2.117) that as Y2 i 0 

we get _x/3 
- _L- 1 1 

RO
(0

(Y,TT0) - e 
2y2(^-e   V)        - 0 , (2.133) V 

as in (2.110b). And 

Ro(a)(Y,TT0) - (•£)  2 • (2.134) 

We recall that the expression 

£ in   (1- 7 j - 1 - H) 
vanishes when § is (R^1*)2 or (R^)2 and is negative for (R^)2 < ? < 

(Ro*3*)2.  Hence, differentiating with respect to %  at (R<j  )2 and (Ro  )2. 

we get that 

25(1+?) "o 

is negative at  (R^1*)2  and positive at  (R^)2.     Now differentiate  (2.117) 

with respect to v2  when RQ   is RjJ1'   or R<}2}    We find 

aRo(l)(Y,n0) 

OY 

and 

* 0 (2.135a) 

aRo(3)(Y,TT0) 
av « 0  . (2.135b) 

"*"a>"*^****j"*M***~'^^***—HI irr- -um ii-• i uumm*mi*&*mmt mm    ii • - -   - -• ••— -*-  •  - 



THE JOHNS HOPKINS UNIVERSITY 

APPLIED PHYSICS LABORATORY 
LAUNE L   MARYLAND 

42. 

So, as Y3 increases from 0 to G^o). the interval ( RQ  , R<5a^ shrinks 

f    /   i \Va\ ^ _    • 
from (0,   i- — j       1 to a small neighborhood of Ro,  where Ro  satisfies 

(2.118) with Y2   replaced by G(-n0).     it is easy to see that 

So > Ro     • (2.136) 

For, as we saw in (2.119), the corresponding limiting flow is stationary, 

and the only acceleration of fluid elements at r - V1/3 (8§+l)1/3 is the 

centripetal acceleration inward, which can only be caused by a positive 

dP 
value of -r- at that point. As Y3 increases from 0 to G(-n0), it will or 

cross a value H(-rr0)  such that 

«o      <  (H(-TT0))
V2,n0)  - Ro* (2.137) 

For 0 < Y3 < H(-n0), the surface r - rt(t) will be stable when W
3 Ro^(Y,n0) 

* r0(t) s V^
a R? and unstable when V^3 RQ* < r0(t) « ^^^(Y.^o)-  For 

H(-n0) <  Y3 < G(-n0), the surface r - rx(t) will be unstable throughout 

the motion.  We may compute H(-n0) from (2.137), (2.132), and (2.117).  The 

result is 

H - 2 (l-n0) R*
a . (2.138) 

For the general initial-value problem, with P0 < 0, let us suppose we 

have given ro(0), rl (0), and rt(0). We use (2.24), (2.25), (2.114), the 

equation E - s, (2.105), (2.27), (2.115), and (2.128) to find V, E, Y, t*. 

n0, and T*.  Using (2.127), we find T0 € [0,T*1 such that 

MO) - F(To) • 

_, . 
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*  •-* If rx(0) * 0, the flow for 0 s t s t" C -To) is given by 

r1(t)-^F(ro+^) 

.*/-*. * ,»-* for tw(T*-T0) s.  t s t" (2T -TO), by 

rx(t) - W
aF ^T*-To-|r) ; 

J* /o„* * /•»-* for t (2^-1-0) * t £ tw (3T*-T0), by 

and in general, by 

rt(t) - v*
/sF0»- 2T*-H0\ ; 

rx(t) • rt(t+2t* T*) . 

If fx(0) £ 0, for 0 * t £ t* T0 we have 

r^t) - V^F(T0 -^ . 

for t*T0 s t s t* (TO+T*), 

rx (t) - V^F^p - To) ; 

for t (T0+T*) « t s t* (T0+2T*), 

rx(t) - V**F (2T* + T0 -^ ; 

and, In general, we have the periodicity (2.139d). 

43. 

(2.139a) 

(2.139b) 

(2.139c) 

(2.139d) 

(2.140a) 

(2.140b) 

(2.140c) 
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Suppose now that e given by (2.114) is > 0 but F0 > 0. As we have 

seen, there is one positive root RO(V,TT0) of (2.117). Consider the special 

flow with Vi(0) - (Ro(Y,TT0))
a + 1.  Then 

r'^Z I f ^H TTi  d§ .     (2.141) 
271 (RO(Y,TTO))«+1 \^o(?-D- f i»(l+ ^ 

If we take the positive square root here, we get Rx  as a monotonically increasing 

function of T for T > 0: 

Rx = F(T)  . (2.142) 

The behavior as T 1   0 is 

Y^TT0+ fiQ+ 1 > 
V      2(R0(Y,n0))

3((Ro(Y,TTo))
2+i)>/ 

Vx - (RO(Y,TT0))
3+1 + ;    T8     , (2.143a) 

1 +TT0(RO(V,TT0))
2 

(2.143b) RO- HUM +ya ^LlISE^Ü^ESSM T« . 
2Ro (Y,n0 ) (1-KTo (Ro (Y,TT0 ) )2 ) 

As T t  »we get 

A/2TT0 T 

RI -    e . (2.144) 

Regarding Taylor instability,   it will occur only at the inner boundary, 

r - r0(t).    From (2.2),   (2.102),   (2.116),  and the known boundary values of 

P, we find 

-•"•*  .— — ,    ..,. ..,~^-..... ... »-«>- — --^—• •-•••• • --»> • ••••- '•••• ....a^jMi^aaa«ain»^iiita»MiiJi.^ajfa—. ,•    .... 
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E        po dr' 
f\  \k' "fe 

R   , TT0 + (UflbOt-i» jr - 'o(t)    M„|i.  ) \Bg 4 
(".145) 

As in the case without circulation, we find a unique RQ, dependent only 

on n0, wi th 0 < Ro < » and 

C1+fe"(+^)-^-n°- (2.146) 

When r0(t) <•  Wa R?, we get no Taylor instability. When r0(t) > W
2 R£, 

we get Taylor instability at r • r0(t). 

So the only question is the relation of RQ to the lower limit Ro(Y>TTo) 

of the inner dimensionless radius.  It is easy to see from (2.117) that we 

have 

and 

Ro(Y»T<o) 10  as  Y2 I 0 

RO(Y,TT0) 
t •  a»  Y2 t » . 

(2.147a) 

(2.147b) 

As Vs increases from 0 to °°, it will cross a value K(n0) such that 

RO(K("O),T-O) - Ro . 

From (2.148), (2.117), and (2.146), we get 

K - 2(1-H*fa)  . 

(2.148) 

(2.149) 

When Vs > K(TT0), the surface r - r0(t) will be unstable during the whole 

motion. 

' "'-""^ '-•'• -•• ••—- - •--• — 
nifrMiin  t_ -   i i nihiiniiii—u« 
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Now consider the general initial-value problem, where we have ro(0), 

^(0), and rx(0).  From (2.24), (2.25), (2.114), the equation E = e, 

(2.27), (2.105), and 

T0 € [O,
00) such that 

(2.27), (2.105), and (2.115) we compute V, E, t , V, and TT0 . We find 

MO) - F(T0)  . 

If fx(0) 2 0,   the flow for t 2 0 is given by 

rx(t)  = V1^    F (TO +pp J  . (2.150) 

If rx(0)  £ 0,   the flow for 0 £ t £ t* T0   is 

*l (t)  = W3 F fr0  - HP ) (2- 15la> t   / 

and for  t 2    t    T0 

Mt)  = W3   pfe - To) . (2.151b) 

Finally,  we consider the case where e as given by (2.114)  is < 0. 

Write E = -€.     Then we use  (2.27),   (2.28),   (2.29d),  and  (2.105)   to find  t*, 

T,  RQ ,  Ri , a, Vi  and v and we set 

"o-i P7 • (2a52) 

The governing equations are (2.29a), (2.29c), and 

P 

(c^+Y3) Jtn^i- - - 1 +TT0(R8-1)  . (2.153) 

•Jm.Hall.I.^Jj».. .,. ,..„„,•..,,..,.„,   . ,,,. .... -.  ,    . „  ... |  r   , .. ,L^jmj>_M»im^«a^.'„.., .-, .,  ...•. —  
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For this flow we must have RQ a KOCY.TTOX where SQ  is  the unique positive 

solution of 

f- Jtn ML+ —\ - -  1 + n0 R§     . (2.154) 

It is clear that 

/l    »A 
So  l{*-] when      y8   » 0  , (2.155a) 

and 

So   t » when v2   t • , (2.155b) 

dSo dSo 
JT   2 °  • (2-155c) 

Consider the flow with V! (0)  - (8O(V,TT0))
2  + I.    We get 

^   8|+l \-l-m0 (S-i)- f infl+ ^/ 

I 
d§     . (2.156) 

Ihis equation,  with positive square roots,  determines fy   as a monotonically 

increasing function of T for T €  (0,»): 

Ri   - P(T)   . (2.157) 

As T  I 0 we get 

2(n0 + £ J 

Vi - R| + 1 + —} j-^—     Ta , (2.158a) 

--•••  -     •-—- 
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Y2 

TT0   * 

Ro - So + r    "i \     T2
     • (2.158b) 

As T t »we have equation (2.144). 

The Taylor instability at the surface r * r0(t) is checked by using 

(2.2), (2.102), (2.153), and the given values of P at the inner and outer 

surfaces: 

V*/3 1 ÖP.        1   (      - n< o 

80 ( * *n tf R§ 

and this is negative, giving us instability at r = r0(t), throughout the 

flow. 

For the general initial-value problem we use r0(0), rx (0), and ix (0) 

to compute V, E, t*, y,  and TT0 from (2.24), (2.25), (2.114), the equation 

E - -e, (2.27), (2.105), and (2.152). From (2.157) we find T0 € [0,») such 

that 

M0) - F(T0) . 

If ix (0)  * 0, the flow for t * 0 is 

ri(t)  - V1'3 F (jo + -pjj     . (2.160) 

If *!(0) s 0, the flow for 0 s t s t* T0  is 

MO  -W3F(T0   -^    , 

and for t 2 t* T0I 

M*> -v4'3  A To 
)    ' 

— "   '       •'- '     '•    . . ....     ,....,..•  ,_,. . * ^_ . .  .....      _   ^ „k  —i 
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